Challenges of Large Format 3D Printing

Large format 3D printing – what is holding us back?

Want to 3D print large objects? I mean, really large objects? To most people who are experienced with traditional rapid prototyping, this still means something only the size of a basketball, because the mere thought of 3D printing something larger than that makes them shudder. Why is this?

There are several reasons, but namely this is because the pain points of current 3D printers amplify greatly for objects bigger than something you can hold in one hand.  Rapid becomes slow, cost-saving becomes expensive, and ultimately a convenient tool becomes a capital-intensive mammoth. Yet each of these pain points are self-induced by the same businesses that currently lead the 3D printing industry. Limitations on large format 3D printing are more the results of business decisions than physical limitations of the technology, and therefore most if not all can be overcome with a new approach to 3D printing.

Below I will discuss the first of the three major obstacles to large format 3D printing as I see them: build speed.


3D printer speed (or lack thereof) – a logical choice, missed opportunity

In the 1990s, NASA Administrator Daniel Goldin coined the phrase “Faster, Better, Cheaper” for the space agency’s approach to building and launching missions to Mars and other faraway places. Unfortunately for him (and played out over a series of failed missions, including a rover that crashed directly into Mars due to botched unit conversion), any engineer worth the paper their diploma is written on knows this is not actually possible. You can get two of the three attributes – faster and better for instance – but it always comes at the expense of the third (i.e. much more expensive instead of cheaper).

The same basic quandary faced 3D printing companies in the 1990s. Apparently they decided that an industry known primarily as rapid prototyping didn’t need to worry about being too slow for anyone, so “better” and “cheaper” were the areas to concentrate their R&D. The problem is, once that became the thrust of their products, that’s also what their customers expected more of. So machine costs came down and precision went up, but speed more or less stayed the same. And the thing is, this is exactly what their installed customer base wanted because they were designing tiny things for which build speed didn’t matter. Waiting overnight for a four-inch tall prototype seemed completely reasonable to medical device companies and small-scale product designers. In fact, these people loved rapid prototyping, and they still do.

So throughout the 1990s and 2000s, as surely as one class of designer reaped the extraordinary benefits of 3D printing, everyone else was left out, specifically those who wanted to 3D print something larger than a basketball.



In my next post I will discuss how I see artificially high material costs and disruption on the low cost end of 3D printing also keeping large format 3D printing from taking hold.

Leave a Reply

Your email address will not be published. Required fields are marked *